

Mixed-Integer PDE-Constrained Optimization Applied Mathematics Research for Exascale Computing

B. van Bloemen Waanders, S. Leyffer, T. Munson, D. Ridzal, and S.M. Wild

Argonne National Laboratory Sandia National Laboratories

August 21-22, 2013

Mixed-Integer PDE-Constrained Optimization

A new modeling paradigm

- Paradigm shift from forward simulations to design of complex structures
- Design of systems involving
 - ... complex PDE simulations,
 - ... uncertainty quantification,
 - ... and discrete/continuous design parameters

Integrate maths, algorithms, and CS

Shape optimization of cavity for ILC [Akcelik et al., 2005]

Applications of MIPDECO

A rich set of DOE application areas

- Subsurface Design Applications
 E.g. remediation of contaminated sites, oil and gas extraction
 - PDE constraints model subsurface flow
 - Discrete design parameters model location/operation of wells
 - Uncertainties model the unknown subsurface
- Operational planning for nuclear reactors: core-reloading
 - Neutron transport & fluid-flow equations
 - Discrete variables model fuel rod arrangement
 - \bullet Imperfect knowledge of fuel \Rightarrow uncertainties

- Accelerator design: Maxwell's equation plus discrete components, e.g. # arc & wiggler cells
- Obesign of nano-materials for ultra-efficient solar cells ... next

MIPDECO for Design of Solar Cells

Goal: Design nonreciprocal coating: full transmission & absorption

- Design meta-material (MM) coating for solar cells
- MM atom of given shape is assembled into molecule
- Typical crystal (layer of molecules) has 10-20 molecules width

- Maxwell's equation models electromagnetic response
- \bullet 0 1 variables model orientation of atom on faces of molecule

MIPDECO for Design of Solar Cells

General form of Maxwell's equation

$$\begin{array}{c} \nabla \times \textbf{H} = \frac{\partial \textbf{D}}{\partial t} + \textbf{J}_e, \ \nabla \times \textbf{E} = -\frac{\partial \textbf{B}}{\partial t} + \textbf{J}_m, \\ \nabla \cdot \textbf{D} = \rho, \ \nabla \cdot \textbf{B} = 0, \end{array}$$

$$\begin{bmatrix} \mathbf{D} \\ \mathbf{B} \end{bmatrix} = \begin{bmatrix} \boldsymbol{\epsilon} & \chi \\ \zeta & \boldsymbol{\mu} \end{bmatrix} \begin{bmatrix} \mathbf{E} \\ \mathbf{H} \end{bmatrix} + \begin{bmatrix} \mathbf{P} \\ \mathbf{M} \end{bmatrix}$$

where $\epsilon = \epsilon(x)$ permittivity; μ permeability

Binary variables $z_{ijk} \in \{0,1\}$ model orientation of MM atoms \Rightarrow construct permittivity and permeability tensors $\epsilon(x), \mu(x)$

$$\epsilon(x) \simeq \widetilde{\epsilon_{j,k}} = \sum_{i \in \mathcal{O}} z_{i,j,k} \epsilon_i$$
 and $\sum_{i \in \mathcal{O}} z_{i,j,k} = 1$

where ϵ_i is fixed permittivity of orientation i

Mathematical and Computational Challenges

Applications give rise to MIPDECO under Uncertainty

where

- $y(\gamma)$ state variables depending on random variables $\gamma \in \Gamma$
- *u* continuous design variables
- z integer design variables
- g describes PDE and boundary conditions
- $F(y(\gamma), u, z)$ is objective, e.g. maximize power of solar cells

Challenge I: Combinatorial Explosion

MIPDECOs generate huge search trees [Belotti et al., 2013]

- Each node in tree is PDE-constrained optimization
- Must take uncertainty into account
- {4 angles} × {6 faces} × {10k cubes} = 24k binary variables
 Brute-Force Approach: assume billion PDECOs per second
 ⇒ exascale machine would run longer than age of universe!

Must exploit hot-starts for re-solve ... solve millions of (N)LPs

Challenge II: New Algorithms & Math

A Simple Approach

$$\left\{ \begin{array}{l} \mathsf{PICO}_{\;\; [\mathsf{Eckstein} \; \mathsf{et} \; \mathsf{al.,} \; 2001]} \\ \mathsf{MINOTAUR}_{\;\; [\mathsf{Mahajan} \; \mathsf{et} \; \mathsf{al.,} \; 2011]} \end{array} \right\} + \left\{ \begin{array}{l} \mathsf{PETSc} \\ \mathsf{Trilinos} \end{array} \right\} \; \Rightarrow \; \; \; \mathsf{failure}$$

Need integrated algorithmic strategy, e.g.

- Tree-search techniques based on surrogate models
- Integrate multilevel combinatorial with multilevel PDE
- Optimization framework guides exploration of uncertainty
- Align algorithmic hierarchies with machine/storage hierarchies

... concerted effort worthy of DOE labs

New math challenges

- Quality or bounds on surrogate models
- What is $\{0,1\}^{\infty}$? E.g. function space for topology optimization

Integrated Uncertainty Quantification

Sources of Uncertainty

- ullet Errors in material properties (ϵ,μ)
- Manufacturing inaccuracies
- Numerical/modeling errors
- Errors from data measurements

Combine PDECO with stochastic programming for UQ

- Design under UQ as two-stage stochastic MIP optimization
- First-stage variables are design variables
- Second-stage variables are solutions of stochastic PDE
- \Rightarrow Block-angular structure, where each block is PDE

Goal: control uncertainty; dimension reduction; adjoint technology

Toward Billion-Way Concurrency

Back-of-Envelope Computation

- Asynchronous tree-search
- Linear solvers inside PDEs
- UQ block-structure

1,000 parallel tree-searches
x 10,000 cores per PDE solve
x 100 cores for UQ
billion-way parallelism

Opportunities for Exascale

- Tree-search loosely coupled solves with small communication
 - Readily scales to 1,000 parallel tree-searches [Goux and Leyffer, 2003]
 - Communicate bounds, new solutions, and sub-trees
- Parallel solvers for PDE-constrained optimization
 - Scalable linear algebra ... up to 150k cores (NEK5000)
- Scenario-based decomposition or UQ
 - Scales with number of scenarios (samples)
 - Some communication between scenarios

Hierarchy of concurrency \Rightarrow multiplicative opportunities

Algorithm-Level Resiliency

Exascale systems likely to have shorter mean-time-to-failure ... check-point-restart no longer an option

Optimization Algorithms can be made resilient

- MIP tree-search: only check-point master node
- Trust-region or line-search provide algorithmic resilience
- Exploit multi-level hierarchy for smart check-pointing
- Stochastic programming (UQ) robust to node failures
- Resilient linear solves [Bridges et al., 2012]

... exploit resilient algorithm design at all levels of hierarchy

Summary and Discussion

Mixed-Integer PDE-Constrained Optimization

- Design of complex systems with discrete parameters under uncertainty
- Opportunity to tackle new, broader class of design applications
- Poses rich set of mathematical, algorithmic, and CS challenges
- Math and DOE applications "made for exascale"
 - Unlikely to tackle problems on smaller systems
 - Hierarchy of concurrency maps well to exascale systems
 - Integrates & combines existing DOE tools

... requires concerted & coordinated effort

Akcelik, V., Biros, G., Ghattas, O., Keyes, D., Ko, K., Lee, L., and Ng, E. (2005).

Adjoint methods for electromagnetic shape optimization of the low-loss cavity for the international linear collider.

In *Journal of Physics Conference Series*, volume 16 of *SciDAC 2005*, page 435–445. Institute of Physics Publishing.

Belotti, P., Kirches, C., Leyffer, S., Linderoth, J., Luedtke, J., and Mahajan, A. (2013).

Mixed-integer nonlinear optimization.

Acta Numerica, 22:1-131.

Bridges, P. G., Ferreira, K. B., Heroux, M. A., and Hoemmen, M. (2012). Fault-tolerant linear solvers via selective reliability. *CoRR*, abs/1206.1390.

Eckstein, J., Phillips, C. A., and Hart, W. E. (2001). PICO: An object-oriented framework for parallel branch-and-bound.

In Proc. Inherently Parallel Algorithms in Feasibility and Optimization and Their Applications, pages 219–265.

Goux, J.-P. and Leyffer, S. (2003). Solving large MINLPs on computational grids. Optimization and Engineering, 3:327–354.

Mahajan, A., Leyffer, S., Linderoth, J., Luedtke, J., and Munson, T. (2011). MINOTAUR: a toolkit for solving mixed-integer nonlinear optimization. wiki-page.

http://wiki.mcs.anl.gov/minotaur.